top of page

List of publications

 

  Global data:

 

       Papers:                          70

       Citations:                    487 (JCR)    1126  (Google SCHOLAR)

       Hirsh index:                 13 (JCR)        20  (Google SCHOLAR)

     

 

 

 

​

​

​

​

​

​

​

​

 

 

 37 - A. Blasco, F.J. Herranz, J. de Lucas and C. Sardõn, Lie--Hamilton systems on the plane: applications and superposition rules, J. Phys. A 48, 345202 (2015)

 

 

 

 36 - J.F. Carinena, J. de Lucas and M.F. Rañada, Jacobi multipliers, nonlocal symmetries  and harmonic oscillators J. Math. Phys. (2015).

                                                                         

                                                                             [Cited: ]

 

 

 35 - J.F. Cariñena and J. de Lucas, Quasi-Lie families, quasi-Lie schemes, and their applications to Abel equations, J. Math. Anal. Appl. 430 648--671 (2015).

 

                                                                             [Cited: ]

 

 

 34 - F.J. Herranz, J. de Lucas and C. Sardõn, Jacobi--Lie systems: theory and low dimensional classification, Accepted in Proceedings AIMS (2015).

                                                                         

                                                                             [Cited: ]

 

 

 33 - J. de Lucas, M. Tobolski and S. Vilarino, A new application of k-symplectic Lie systems, Int. J. Geom. Methods Mod. Phys. 1550071 (2015).

 

                                                                              [Cited: ]

 

 

 32 - J. de Lucas and S. Vilariño, k-symplectic Lie systems: theory and applications, J. Differential Equations 258 (6), 2221--2255 (2015).

 

                                                                              [Cited: ]

 

 

 31 - A. Ballesteros, A. Blasco, J.F. Herranz, J. de Lucas and C. Sardõn, Lie-Hamilton systems on the plane: theory, classification and applications, J. Differential Equations 258, 2873--2907 (2015).

 

                                                                              [Cited: ]

 

 

 30 - J.F. Cariñena, J. Grabowski, J. de Lucas and C. Sardón, Dirac--Lie systems and Schwarzian equations, J. Differential Equations 257 (7), 2303--2340 (2014).30

 

                                                                              [Cited: ]

 

 29 - A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas and C. Sardón, From constants of motion to superposition rules for Lie--Hamilton systems, J. Phys. A: Math. Theor. 46, 285203 (2013).

 

                                                                              [Cited: ]

 

 28 - J. de Lucas and C. Sardón, On Lie systems and Kummer--Schwarz equations, J. Math. Phys. 54, 033505 (2013).

                                                                              [Cited: ]

 

 27 - J.F. Cariñena, J. de Lucas and C. Sardón, Lie--Hamilton systems: theory and applications, Int. J. Geom. Methods Mod. Phys. 10, 09129823 (2013).

 

                                                                              [Cited: ]

 

 26 - J.F. Cariñena, J. de Lucas and P. Guha, A quasi-Lie schemes approach to the Gambier equation, SIGMA 9, 026 (2013).

 

                                                                              [Cited: ]

 

 25 - J. Grabowski and J. de Lucas, Mixed superposition rules and the Riccati hierarchy, J. Differential Equations 254, 179--198 (2013). [cites:2]

 

 

                                                                           

 24 - J.F. Cariñena, J. de Lucas and J. Grabowski, Superposition rules for higher-order systems and their applications, J. Phys. A: Math. Theor. 45, 185202 (2012). [Cites:5][Arxiv]

 

 

 23 - J.F. Cariñena, J. de Lucas and M.F. Rañada, Un enfoque geometrico de las ecuaciones diferenciales de Abel de primera y segunda clase, Actas del XI Congreso del Dr. Antonio Monteiro 2011, 63--82 (2012).

 

 

 22 - J.F. Cariñena, J. de Lucas and C. Sardón, A new Lie systems approach to second-order Riccati equations, Int. J. Geom. Methods Mod. Phys. 9, 1260007 (2012).[Cites:4] [Arxiv][MathSci]

 

 

 21 - J.F. Cariñena and J. de Lucas, Superposition rules and second-order Riccati equations, J. Geom. Mech. 3, 1--22, 2011.[Cites:12] [Arxiv] [MathScinet]

 

 

  - J.F. Cariñena and J. de Lucas, Lie systems: theory, generalizations, and applications, Dissertationes Math. 479, 2011.[Cites:7]20

 

 

 19 - J.F. Cariñena and J. de Lucas, Superposition rules and second-order differential equations, in: XIX International Fall Workshop on Geometry and Physics, AIP Conference Proceedings 1360, American Institute of Mathematics, 2011, 127--132. [Arxiv] [Cites:2]

 

 18 - P.G. Estevez, M.L. Gandarias and J. de Lucas, Classical Lie symmetries and reductions of a nonisospectral Lax pair, J. Nonlinear Math. Phys. 18, 51--60 (2011). [Arxiv] [MathScinet]

 

 17 - J.F. Cariñena and J. de Lucas, Integrability of Lie systems through Riccati equations, J. Nonl. Math. Phys. 18, 29--54 (2011). [Cites:2][Arxiv] [MathScinet]

 

 

 16 - J.F. Cariñena, J. de Lucas and M.F. Rañada, A geometric approach to integrability of Abel differential equations, Int. J. Theor. Phys. 50, 2114-2124 (2011). [Cites:5][Arxiv] [MathScinet]

 

 

 15 - F. Avram, J.F. Cariñena and J. de Lucas, A Lie systems approach for the first passage-time of piecewise deterministic processes, in the book: Modern Trends of Controlled Stochastic Processes: Theory and Applications, pp. 144-160 (A.B.Piunovskiy ed), Luniver Press, 2010. 

 

 

 14 - J.F. Cariñena, J. Grabowski and J. de Lucas, Lie families: theory and applications, J. Phys. A 43 305201 (2010). [Cites:4] 

 

 

 13 - R. Flores, J. de Lucas and Y. Vorobiev, Phase splitting for periodic Lie systems, J. Phys A. 43, 205208 (2010). 

 

 

 12 - J.F Cariñena, J. de Lucas and M.F. Rañada, Lie systems and integrability conditions for t-dependent frequency harmonics oscillators, Int. J. Geom. Methods Mod. Phys. 7, 289--310 (2010). Arxiv:0908.2292[Cites:5] [MathScinet]

 

 

 11 - J.F. Cariñena and J. de Lucas, Quantum Lie systems and integrability conditions, Int. J. Geom. Meth. Mod. Phys. 6, 1235--1252 (2009). Arxiv:0908.2292[Cites:6]

 

 

 10 - J.F. Cariñena, P.G.L. Leach and J. de Lucas, Quasi-Lie schemes and Emden--Fowler equations, J. Math. Phys. 50, 103515 (2009) Arxiv:0908.2292[Cites:6]

 

 

 9 - J.F. Cariñena, J. Grabowski and J. de Lucas, Quasi-Lie schemes: theory and applications, J. Phys. A 42, 335206 (2009). Arxiv:0810.1160 [Cites:10]

 

 

 8 - J.F. Cariñena and J. de Lucas, Applications of Lie systems in dissipative Milne--Pinney equations, Int. J. Geom. Meth. Modern Phys. 6, 683--699 (2009). Arxiv:0902.2132 [Cites:14]

 

 

 7 - J.F. Cariñena, J. de Lucas and A. Ramos, A geometric approach to time evolution operators of Lie quantum systems, Int. J. Theor. Phys. 48, 1379--1404 (2009). Arxiv:0811.4386[Cites:7]

 

 

 6 - J.F. Cariñena and J. de Lucas, Lie systems and integrability conditions of differential equations and some of its applications, Proceedings of the 10th international conference on differential geometry and its applications. Arxiv:0902.1135 [Cites:No data]

 

 

 5 - J.F. Cariñena, J. de Lucas and M.F. Rañada, Recent Applications of the Theory of Lie Systems in Ermakov Systems, SIGMA 4, 031 (2008). Arxiv:0803.1824[Cites:25]

 

 

 4 - J.F. Cariñena, J. de Lucas and M.F. Rañada, Integrability of Lie systems and some of its applications in physics, J. Phys. A 41, 304029 (2008). Arxiv:0810.4006[Cites:9]

 

 

 3 - J.F. Cariñena and J. de Lucas, A nonlinear superposition rule for solutions of the Milne--Pinney equation, Phys. Lett. A 372, 5385--5389 (2008). Arxiv:0807.0370[Cites:16]

 

 

 2 - J.F. Cariñena, J. de Lucas and A. Ramos, A geometric approach to integrability conditions for Riccati equations, Electronic Journal of Differential Equations 122, 1--14 (2007).Arxiv:0810.1740[Cites:No data]

 

 

 1 - J.F. Cariñena, J. de Lucas and Manuel F. Rañada, Nonlinear superpositions and Ermakov systems, in the book: Differential Geometric Methods in Mechanics and Field Theory, pp.15--33, eds F. Cantrijn, M. Crampin and B. Langerock, Academia Press, Prague, 2007. Arxiv:0810.3494 [Cites:No data]

​​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

bottom of page